Friday, May 26, 2017

Testing a Therapy Assistant Robot

Proof of Concept

Adapting a General Purpose Robot for Paediatric Rehabilitation: In-situ Design of a Socially Assistive Robot

Carrillo FM, Butchart J, Knight S, Scheinberg A, Wise L, Sterling L & McCarthy C

Link to article:https://arxiv.org/abs/1705.05142

Objective: Socially Assistive Robots are engaging and motivating. For social robots in pediatric rehabilitation, what are the therapist, carer and patient-centric properties needed for robots to be effective stand-alone therapeutic aids? What are the lessons from ongoing use in a clinical setting?

Process: Development began with weekly visits to clinic with the robot to stimulate brief discussions with parents and therapists; and interactions with children, followed by programmers involving therapists in cycles of programming the NAO robot and reviewing the exercise sequences. Later development shifted the sole operation of the robot to therapists, parents and care-givers. Clinical use of the robot had 5 therapists working with 9 patients over 14 sessions and continued the iterative design process.

Outcomes: The authors state: “this (deployment) approach has led to a system that not only meets minimum operational and therapeutic requirements for clinical deployment, but also has clearly established priorities for further development as we prepare for formal clinical trials of the socially assistive robot for pediatric rehabilitation.”

Monday, May 1, 2017

Distance Rehab for Kids – A Case Report

Case Report

Feasibility of Pediatric Game-Based Neurorehabilitation Using Telehealth Technologies: A Case Report

Reifenberg G, Gabrosek G, Tanner K, Harpster K Proffitt R & Persch A

American Journal of Occupational Therapy, 71 7103190040

DOI: doi.org/10.5014/ajot.2017.024976

Objective: Feasibility of and suitable outcome measures for distance-monitored video game rehabilitation.

Process: A child with hemiparetic spastic cerebral palsy played 7 hours weekly for 8 weeks of computer games monitored at a distance by a therapist via videoconference technology KUBI The setup permitted the remote therapist to move their camera (iPad) to see the child and the child’s position. The distance therapist consulted with child and parents 30 minutes each week for technical issues.

The outcome measures that were expected to detect change before and after the test condition were: Quality of Upper Extremity Skills Test (QUEST), Bruininks-Oseretsky Test of Motor Proficiency 2 Ed.(BOT-2), Assisting Hand Assessment (AHA), Pediatric Evaluation and Disability Inventory-Computer Adapted Test (PEDI-CAT) and Pediatric Motor Activity Log (PMAL). Pre- and post- tests were applied two weeks before and after the game sessions.

Findings: Feasibility – the audio quality was sufficient for the therapist to interact with the child and family, and the video quality allowed the therapist to see the child’s activity without seeing the TV monitor. There were no insurmountable technical issues though this subject and family were familiar with the technologies used and so this case did not represent a truly novel situation.

Measures – All the measures were sensitive to change in the child’s performance before and after the test condition except the QUEST.

“The use of telehealth technologies provides practitioners with a mechanism to supervise treatments for clients in underserved communities. This research provides initial evidence that it is feasible to administer game-based neurorehabilitation and telehealth technologies and monitor relevant outcomes.”